1.8] Change of Coordinate System:
The Transformation Matrix

In this section we show how to represent a vector in different coordinate systems. Consider
the vector A expressed relative to the triad ijk:

A=iA,+jA,+KA, (1.8.1)

Relative to a new triad i’j’k” having a different orientation from that of ijk, the same vector
A is expressed as

A=VA, +jA, +KA, (1.8.2)

Now the dot product A - i’ is just A, that is, the projection of A on the unit vector i’. Thus,
we may write
Ay =Ai =G4, + (1A, + kDA,
Ay =A-f =G A, +( DA, +(k- A, (18.3)
Ay =A-K=(-k)A, +(j-k)A, +(k-K)A,

The scalar products (i - i), (i - j’), and so on are called the coefficients of transformation.

The unprimed components are similarly expressed as

A =Ai={ DA, +( DA, + (K -DA,
A, =A-j= i jA, +(j’-j)Ay, +k’- A, (1.8.4)
A, =A-k=@G"KA, +( KA, +K KA,

I. 1" =1"-1and so on, but those in the rows (equations) of Equation 1.8.4
appear in the columns of terms in Equation 1.8.3, and conversely.

Thus, Equation 1.8.3 is written

A, (ii ji k-i')(A
Ay l=licf i kj| a4, (1.8.5)
Al ik joK kKA

x

z

The 3-by-3 matrix in Equation 1.8.5 is called the transformation matrix.



EXAMPLE 1.8.1

Express the vector A = 3i + 2j + k in terms of the triad i’j’k’, where the x'y"—axes are
rotated 45° around the z-axis, with the z- and z"-axes coinciding, as shown in Figure 1.8.1.
Referring to the figure, we have for the coefficients of transformation i - i’ = cos 45° and
so on; hence,

i-if =142 joit =142 k-i’=0
i-j=-1A2 joj =142 k-j =0
i-k’=0 j-k’ =0 k-k'=1

These give

2 -1

A —i+£—i A —.__3+_—_
so that, in the primed system, the vector A is given by

5.

1
A=—i-—F=j+k’
2 TR

45°

45°
Figure 1.8.1 Rotated axes. x x

EXAMPLE 1.8.2
Find the transformation matrix for a rotation of the primed coordinate system through
an angle ¢ about the z-axis. (Example 1.8.1 is a special case of this.) We have

i-i'=j.j=cos¢
jei=-i.j =sin¢
k-k=1

and all other dot products are zero; hence, the transformation matrix is

cos¢p sing O
—sin¢g cos¢ O
0 0 1



Consequently, the matrix for the combination of two rotations, the first being about the
z-axis (angle ¢) and the second being about the new y’-axis (angle 0), is given by the
matrix product

cos@ 0 —sin@)( cos¢ sing O cos@ cos¢ cos@sing —sinf
0 1 0 —sin@ cos¢® O|=| -—sing cos @ 0 (1.8.6)
sin@ 0 cos@ 0 0 1 sin@cos¢ sinfsing cosh

Let us take the velocity v of a projectile of mass m traveling through
space along a parabolic trajectory as an example of the vector.

Figure 1.8.2 Velocity of a
moving particle referred to two
different two-dimensional
coordinate systems.




We express the coordinate rotation in terms of the transformation matrix, defined
in Equation 1.8.5. We write all vectors as column matrices; thus, the vector v = (v,,v,) is

U, vcos0
V= = .
o, vsin 6
Given the components in one coordinate system, we can calculate them in the other using
the transformation matrix of Equation 1.8.5. We represent this matrix by the symbol R’

R ivi" jed cos® sin@
“\i-j j-j7) \-sin® cos@
The components of v’ in the x"y’ coordinate system are
, (YY) cos@ sinf \[vcosO
V= 0/ \-sin® cos@)\ vsind
or symbolically, v' = Rv. Here we have denoted the vector in the primed coordinate system

by v'. Bear in mind, though, that v and v’ represent the same vector. The velocity vector

The square of the magnitude of v is

vcosB

(vev)=¥v=(vcosO vsine)( :
vsinf

) = v® cos’0 + v* sin’@ = v’
Similarly, the square of the magnitude of v’ is

(V)
(v -v)=v'v' =(v 0) 0 =2 +0?% = p?

In each case, the magnitude of the vector is a scalar v whose value is independent of our
choice of coordinate system. The same is true of the mass of the projectile. If its mass
is one kilogram in the xy coordinate system, then its mass is one kilogram in the x'y” coor-



EXAMPLE 1.10.3
Rolling Wheel

Let us consider the following position vector of a particle P:™

r=r +r,

in which

r,=ibwt+jb

ry =1ib sin @t + jb cos wi

Now r; by itself represents a point moving along the line y = b at constant velocity,
1 0y P P g g Y b
provided @ is constant; namely,

v1=%=iba)

The second part, r, is just the position vector for circular motion, as discussed in
Example 1.10.2. Hence, the vector sum r + r, represents a point that describes a circle
of radius b about a moving center. This is precisely what occurs for a particle on the rim

the position vector of the particle P relative to the moving center. The actual path is a
cycloid, as shown in Figure 1.10.5. The velocity of P is

v=v,+vy=i(bw+bwcos wt) — jbwsin wt



1.11| Velocity and Acceleration
in Plane Polar Coordinates

polar coordinates r, 6 to express the position of a particle moving in a
plane. The position of the particle can be written as the product of the

radial distance r by a unit radial vector e, :
r=re,

if we differentiate with respect to t, we have

To calculate the derivative de,/dt,

¥

€g
er

i x

Let us introduce another unit vector, ey, whose direction is perpendicular to e, .

Ae, =e,A0

If we divide by At and take the limit, we get

de, _e, 40
dt % dt
Aee = - erAG
de, de
_ Y = _er ——
dt dt

v=re, +rbe,

Thus, 7 is the radial component of the velocity vector, and 8 is the transverse component.

To find the acceleration vector, we take the derivative of the velocity with respect to

time. This gives

dv . . de,
a=—=ie, +r

T dt

A +(0+10)e, +10

y deq

dt

The values of de,/dt and deg/dt are given



the acceleration vector in_plane polar coordinates:
a=(i— r9'2)er +(rf+ 21’*9)e9
Thus, the radial component of the acceleration vector is
a, =1 - ro®

and the transverse component is

.o 1d, g
=r0+2r0 =——(r"0
g =T 2 dt(r )

r

EXAMPLE 1.11.1

A honeybee hones in on its hive in a spiral path in such a way that the radial distance
decreases at a constant rate, r = b — ct, while the angular speed increases at a constant
rate, 6 = kt. Find the speed as a function of time.

Solution:

We have # =—c and # = 0. Thus, from Equation 1.11.7,
v=—ce, + (b —ct)ktey

S0
v =[c®+ (b - ct)’k*]?

which is valid for # <b/c. Note thatv=c bothfort=0,r=5 and fort=b/c, r=0.




EXAMPLE 1.11.2

On a horizontal turntable that is rotating at constant angular speed, a bug is crawling
outward on a radial line such that its distance from the center increases quadratically
with time: r=bt’, 8= wt, where b and @ are constants. Find the acceleration of the bug.

Solution:
We have + =2bt, #+ =2b, 0 =@, 6 =0, Substituting into Equation 1.11.9, we find
a=e,(2b - bt'a’) + e [0 + 2(2bt) ]
=b©2 -t e, + dbwte,

Note that the radial component of the acceleration becomes negative for large ¢ in this
example, although the radius is always increasing monotonically with time.

1.12| Velocity and Acceleration in Cylindrical
and Spherical Coordinates

Cylindrical Coordinates

cylindrical coordinates R, ¢, z. The position vector is then written as

r = Rey +ze,
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Spherical Coordinates
When spherical coordinates r, 8, ¢ are employed to describ:




r=re,
v=e,r+ e¢r¢sin6 +e,r6

a=(-rd’sin’0— réz)er +(r0 + 270 — r¢* sin O cos B)e,

+(r¢sin 0 + 2@ sin 6 + 2r6p cos O)e,

A bead slides on a wire bent into the form of a helix, the motion of the bead being given

in cylindrical coordinates by R =b, ¢= wt, z =ct. Find the velocity and acceleration vec-
tors as functions of time.

Solution:

Differentiating, we find R=R =0, dp=w, $=0, 2=c, 2=0. So, from Equations
1.12.2 and 1.12.3, we have

v=bwe,+ce,

9
a=—b(0 €r



1.17

1.18

1.19

1.20
1.21

A small ball is fastened to a long rubber band and twirled around in such a way that the ball
moves in an elliptical path given by the equation

r(t) =ib cos ot +j2b sin wt

where b and ware constants. Find the speed of the ball as a function of ¢. In particular, find
v att=0and at t = /2, at which times the ball is, respectively, at its minimum and max-
imum distances from the origin.

A buzzing fly moves in a helical path given by the equation
r(t) =ib sinwt + jb cos wt + ket”

Show that the magnitude of the acceleration of the fly is constant, provided b, @, and ¢ are
constant.

A bee goes out from its hive in a spiral path given in plane polar coordinates by
r=be" O=ct

where b, k, and ¢ are positive constants. Show that the angle between the velocity vector
and the acceleration vector remains constant as the bee moves outward. (Hint: Find v - a/va.)
Work Problem 1.18 using cylindrical coordinates where R=b, ¢ = wt, and z = ct’.

The position of a particle as a function of time is given by
r(t) =il — ™) +je

where k is a positive constant. Find the velocity and acceleration of the particle. Sketch its
trajectory.



L.17

118

1.19

1.21

V(1) = —ibasin{ e |+ j2bw cos|wr )

1 |
|E|= I[Ff:t.r’ sin’ e + 40w’ cos’ m.r]l_ = bm{1+3m5’ :'r.r.rF
i ()= —iber" cosei— j2he’ sin w

|
|5‘|=f}m?{]+35in: m.rF

at =0, |F|=Ehr1r; at f=——, |F|=bm
2w

V(1) =ibercosen — jhersin et + k 2et
alr)= —ibew’ sin e — jhe’ cos e +k2c

-
-

|:'r| = {b:mq sin” et + b e’ cos’ or + 4¢° }L‘ = I[.EJ:-::-.:q +4¢ ]

T =P8 +rdé, = hke"é + bee"i,
a=(F-re |é, +(ré+200)é, =b(K* —c* )e"é + 2bcke"é,

oG h:kf.ﬁ'z—fz}ﬂlh+2hlﬂ'lkﬁ'zﬂ
cosg= va ] '
it = . .4 5 |7
hf"{kuc’jrﬁe"[{k-—.:-'} +4c-*k-]-
k(& +&
cosg = (K +e } = ¢ —, & constant

(B fe+e) (8 e

a=(R-Rg)é, +(2Rp+ R é, + 2.
= —fm:.l:ék + 2ee,

al= (0 +4c°
Flt)= f[l —e™ J + je'
Fli)=ike ™ + jke"
F(t)=—ik'e™ + ji'e"



